Interference Testing And Consultancy Services (Pty) Ltd ITC SERVICES (PTY) LTD Reg 88/002032/07 Plot 44 Kameeldrift East, Pretoria Private Bag X13 Lynn East 0039 Republic of South Africa Tel (012) 808 1730 Int + 27 12 808 1730 Fax (012) 808 1733 \\192.168.0.1\public\reports\Misc\\5525 - Joint Venture Elec Services - BS EN 50293.doc # BS EN 50293 TESTS ON THE JOINT VENTURES ELECTRONIC SERVICES DIAMOND PARKING GUIDANCE SYSTEM REFERENCE NUMBER R 5525/13 REVISION : 1.0 DATE : 20/06/2013 COPY : Master **CONFIGURATION CONTROL** ORIGINAL ONLY IF THIS NOTE IS IN RED INK | PARTIES INVOLVED | | | | | | | |--|------------|-----------|------------|--|--|--| | AUTHORITY | NAME | SIGNATURE | DATE | | | | | JOINT VENTURES ELECTRONIC SERVICES Client: | D Maron | | | | | | | ITC SERVICES Approved By: | JJ Joubert | m.J. | 20/06/2013 | | | | | ITC SERVICES Tested by: | CJ Deysel | Deyns | 20/06/2013 | | | | | DISTRIBUTION LIST | | | | | | |---------------------------|-----------------------|------------------------------------|--|--|--| | COPY NO NAME ORGANISATION | | | | | | | MASTER | CONFIGURATION LIBRARY | JOINT VENTURES ELECTRONIC SERVICES | | | | | 1 | CONFIGURATION LIBRARY | ITC SERVICES | | | | | | | | | | | | | | | | | | | HISTORY SHEET | | | | | | | |--|------------|-----------|-----|-----|--|--| | REV DATE AUTHOR PAGES AFFECTED CHANGE PROPOSAL | | | | | | | | 1.0 | 20/06/2013 | CJ Deysel | All | N/A | | | | | | | | | | | | MAGNETIC ARCHIVE INFORMATION | | | | |---|--|--|--| | DIRECTORY | FILE NAME | | | | \\192.168.0.1\public\reports\Misc\552
5 - Joint Venture Elec Services - BS
EN 50293.doc | 5525 - Joint Venture Elec Services - BS EN 50293.doc | | | | LIST OF EFFECTIVE PAGES | | | | | CONFIGURATION
CONTROL | | | | |-------------------------|-----|------|-----|------|--------------------------|------|-----|--| | PAGE | REV | PAGE | REV | PAGE | REV | PAGE | REV | | | 1 | 1.0 | 9 | 1.0 | 17 | 1.0 | | | | | 2 | 1.0 | 10 | 1.0 | 18 | 1.0 | | | | | 3 | 1.0 | 11 | 1.0 | 19 | 1.0 | | | | | 4 | 1.0 | 12 | 1.0 | 20 | 1.0 | | | | | 5 | 1.0 | 13 | 1.0 | 21 | 1.0 | | | | | 6 | 1.0 | 14 | 1.0 | 22 | 1.0 | | | | | 7 | 1.0 | 15 | 1.0 | 23 | 1.0 | | | | | 8 | 1.0 | 16 | 1.0 | | | | | | | CLIENT INFORMATION | | | | |-------------------------|---|--|--| | DESCRIPTION INFORMATION | | | | | Name | Joint Ventures Electronic Services | | | | Address: | 1st Floor, Femco Business Park
775 Pretoria Main Rd
Wynberg | | | | | Danny Maron | | | # **ACRONYMS AND ABBREVIATIONS** AVE Average C Circular CSIR Council for Scientific and Industrial Research E-Fields Electric Fields EFT Electrical Fast Transients EMC Electromagnetic Compatibility EMI Electromagnetic Interference ESD Electrostatic Discharge EUT Equipment Under Test H Horizontal HCP Horizontal Coupling Plane NIST National Institute of Science and Technology OATS Open Area Test Site PC Personal Computer QP Quasi-Peak RF Radio Frequency SANAS South African National Accreditation System V Vertical VCP Vertical Coupling Plane # **TABLE OF CONTENTS** | 2. TEST RESULT SUMMARY 2.1 EMISSION CLASSES AND IMMUNITY CRITERIA 2.1.1 Emissions 2.1.2 Immunity | | |---|------------| | 2.1 EMISSION CLASSES AND IMMUNITY CRITERIA | | | 2.1.1 Emissions | | | | | | 2.1.2 Illinuity | | | | | | 3. TEST METHODOLOGY | 8 | | 3.1 ENVIRONMENTAL CONDITIONS DURING TEST: | 8 | | 4. CALIBRATION OF EQUIPMENT | 8 | | 5. MEASUREMENT OF UNCERTAINTY | \$ | | | | | 5.1 CONDUCTED EMISSIONS | | | 5.2 RADIATED EMISSIONS | | | 6. TEST SAMPLE DESCRIPTION AND TEST SETUP DETAILS | 9 | | 7. IMAGES | 10 | | 7.1 DEVICE IMAGES | | | 7.1 DEVICE IMAGES | | | | | | | | | 8.1 SET-UP | 12 | | 8.1.1 Radiated Emission Results: 30 – 1000MHz | | | 8.1.2 Conclusion | | | 8.1.3 Conducted Emission Results | | | 8.1.4 Conclusion | 15 | | 9. IMMUNITY | 16 | | 9.1 ELECTRICAL FAST TRANSIENTS | 16 | | AC Power Ports | 16 | | • I/O Ports | 16 | | 9.1.1 Results | 16 | | 9.1.2 Conclusion | | | 9.2 ELECTROSTATIC DISCHARGE | | | 9.2.1 Set-up | | | 9.2.2 Conclusion | | | 9.3 SURGES | | | 9.3.1 Set-up | | | AC Power Port | | | 9.3.2 Results | | | 9.3.3 Conclusion | | | 9.4 RADIATED IMMUNITY | | | 9.4.2 Results | | | 9.4.3 Conclusion | | | 9.5 CONDUCTED IMMUNITY | _ | | 9.5.1 Set-up | | | 9.5.2 Results | | | 9.5.3 Conclusion | | | 9.6 VOLTAGE DIPS AND INTERRUPTIONS | | | 9.6.1 Set-up | | | 9.6.2 Results | | | 9.6.3 Conclusion | | | 9.7 HARMONICS | | | 9.7.1 Set-up | <u>2</u> 2 | | 11. | CONCLUSION | 23 | |-------|---------------------------------|----| | 10. | COMPLIANCE STATEMENT | 22 | | 9.8.2 | Conclusion | 22 | | 9.8.1 | Setup | 22 | | | VOLTAGE FLUCTUATIONS & FLICKERS | | | 9.7.3 | Conclusion | | | 9.7.2 | Results | 22 | # **LIST OF TABLES** | Table 8.1-1: Test equipment used for Conducted and Radiated Emission Measurements | .12 | |---|-----| | Table 9.1-1 Test equipment used for Electrical Fast Transients | .16 | | Table 9.2-1 Test equipment used for ESD | .17 | | Table 9.2-2 Results of ESD (Contact discharge) | .17 | | Table 9.2-3 Results of ESD (Air discharge) | .17 | | Table 9.3-1 Test equipment used for Surges | .18 | | Table 9.4-1 Test equipment used for Radiated Immunity | .19 | | Table 9.5-1 Test equipment used for Conducted Immunity | .20 | | Table 9.6-1 Test equipment used for Voltage Dips and Interruptions | .2 | | Table 9.7-1 Test equipment used for Harmonic Current Emissions | 22 | # 1. INTRODUCTION The Joint Ventures Electronic Services Diamond Parking Guidance System consisting of: - 1. PGS sensors with serial numbers: 1001, 1002, 1003 - 2. PGS Numeric Display, serial number: 1001 - 3. PGS Zone Buffer, serial number: 1001 - 4. PGS Power Supply, serial number: 1001 Henceforth referred to as Equipment Under Test (EUT), was tested for compliance on 05/06/2013 and retested on 20/06/2013 at the premises of ITC Services (Pty) Ltd to the following specifications: - BS EN 50293 (2001): 'Electromagnetic compatibility Road traffic signal systems Product standard' - SANS 222 (2009) / CISPR22 (2008): 'Information technology equipment Radio disturbance characteristics - Limits and methods of measurement' - SANS 61000-3-2 (2009) / IEC 61000-3-2 (2009): Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A per phase) - SANS 61000-3-3 (2009) / IEC 61000-3-3 (2008) : Limits Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems – Equipment with rated current ≤16 A per phase - SANS 61000-4-2 (2009) / IEC 61000-4-2 (2008): Testing and measurement techniques Electrostatic discharge immunity test - SANS 61000-4-3 (2008) / IEC 61000-4-3 (2010): Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test - SANS 61000-4-4 (2011) / IEC 61000-4-4 (2011): Testing and measurement techniques Electrical Fast Transient / Burst - SANS 61000-4-5 (2006) / IEC 61000-4-5 (2005): Testing and measurement techniques Surge immunity test - SANS 61000-4-6 (2009) / IEC 61000-4-6 (2008): Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields - SANS 61000-4-11 (2005) / IEC 61000-4-11(2004): Testing and measurement techniques Voltage Dips, Short Interruptions and voltage variations immunity test. ## 2. TEST RESULT SUMMARY | CISPR 22 Radiated Emissions | Pass Class B | |--|------------------| | CISPR 22 Conducted Emissions (Power Leads) | Pass Class B | | IEC 61000-4-2 Electrostatic discharge immunity test | Pass Criterion B | | IEC 61000-4-3: Radiated, radio-frequency, electromagnetic field immunity test | Pass Criterion A | | IEC 61000-4-4: Electrical Fast Transient / Burst | Pass Criterion B | | IEC 61000-4-5: Surge immunity test | Pass Criterion A | | IEC 61000-4-6: Immunity to conducted disturbances, induced by radio-frequency fields | Pass Criterion A | | IEC 61000-4-11: Voltage dips | Pass Criterion B | | IEC 61000-4-11: Voltage Interruptions | Pass Criterion B | | IEC 61000-3-2: Harmonic emissions | Pass | | IEC 61000-3-3: voltage changes, voltage fluctuations and flicker | Pass | #### 2.1 EMISSION CLASSES AND IMMUNITY CRITERIA #### 2.1.1 Emissions #### CISPR 22 Classifies ITE as either Class A or Class B. Class B ITE is a category of apparatus which satisfies the class B ITE disturbance limits. Class B ITE is intended primarily for use in the domestic environment and may include: - Equipment with no fixed place of use; for example, portable equipment powered by built-in batteries; - Telecommunication terminal equipment powered by a telecommunication network; - Personal computers and auxiliary connected equipment. NOTE The domestic environment is an environment where the use of broadcast radio and television receivers may be expected within a distance of 10 m of the apparatus concerned. Class A ITE is a category of all other ITE which satisfies the class A ITE limits but not the class B ITE limits. Such equipment should not be restricted in its sale but the following warning shall be included in the instructions for use: ### Warning This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. #### 2.1.2 Immunity #### The Criteria set-out above are defined as follows: Criterion A: normal performance within limits specified by the manufacturer, requestor or purchaser; **Criterion B:** temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention; **Criterion C:** temporary loss of function or degradation of performance, the correction of which requires operator intervention: ### 3. TEST METHODOLOGY ## 3.1 ENVIRONMENTAL CONDITIONS DURING TEST: Temperature: 19 - 20 °C Relative Humidity: 32 -35 % # 4. CALIBRATION OF EQUIPMENT The computer controlled EMI Measuring system is checked for amplitude and frequency accuracy with a signal generator (calibrated by a SANAS accredited laboratory and is traceable to the national standards maintained by the CSIR) on a monthly basis. The calibration of the equipment is performed by Inala Technology. All equipment Calibration Certificates are available on request. ## 5. MEASUREMENT OF UNCERTAINTY The uncertainty budget is calculated according to the guidelines of LAB34 and CISPR16-4 ### 5.1 CONDUCTED EMISSIONS - Compliance is deemed to occur if all measured disturbances are 0.83dB below the CISPR 22 limit. - Non-compliance is deemed to occur if any measured disturbance is less than 0.83dB below the CISPR 22 limit. ### 5.2 RADIATED EMISSIONS - Compliance is deemed to occur if all measured disturbances are below the CISPR 22 limit. - Non-compliance is deemed to occur if any measured disturbance exceeds the CISPR 22 limit. # 6. TEST SAMPLE DESCRIPTION AND TEST SETUP DETAILS The specific test methodology will be discussed under each relevant test if different to the general set-up guidelines below. The **EUT** was subjected to all tests in the following way: - The EUT was switched on and operated in accordance with the manufacturer instructions. - Tests were performed while the device was fully operational. - Deviations from the above set-up will be noted in each specific case. # 7. IMAGES # 7.1 DEVICE IMAGES **PGS Zone Buffer** **PGS Numeric display** **PGS Sensors** # 7.2 SETUP IMAGES **Diamond Parking Guidance System** SANS / IEC 61000-4-2: Electro Static Discharge test set-up # 8. EMISSIONS # 8.1 SET-UP - The EUT was switched on and operated in accordance with the manufacturer instructions. - Automated scans in the frequency band 30MHz to 1000MHz (radiated emissions) were done in order to determine compliance emission results for the EUT. Table 8.1-1: Test equipment used for Conducted and Radiated Emission Measurements | EQUIPMENT | SERIAL NO | |--------------------------|--------------------| | IBM Compatible PC | Ser No : None | | Rohde & Schwarz ESPC | Ser No: 845296/004 | | BIA 30 Biconical antenna | Ser No : 3568 | | EM 6950 Log-P Antenna | Ser No: ITC001 | | AFJ LS-16 LISN | Ser No: 90038 | ### 8.1.1 Radiated Emission Results: 30 - 1000MHz Graph 1: Represents peak radiated emissions measured from the EUT. Emission levels were below the Class B limit. Note that the test distance was 3m. The limit line was adjusted accordingly. The test was performed with the antennas in the Horizontal polarization. ### 8.1.2 Conclusion The EUT complies with the radiated emissions requirements of SANS 222 / CISPR 22 Class B. # 8.1.3 Conducted Emission Results Graph CE1: Peak and Average Conducted emissions measured on the live lead of the EUT was below the Class B quasi peak and Average limit. Graph CE2: Peak and Average Conducted emissions measured on the Neutral lead of the EUT was below the Class B quasi peak and Average limit. # 8.1.4 Conclusion The EUT complies with the conducted emissions requirements of SANS 222 / CISPR 22 Class B. # 9. IMMUNITY #### 9.1 ELECTRICAL FAST TRANSIENTS - The EUT was supplied with the required voltage and subjected to a direct injected 5kHz repetition rate 5/50nS wave interference signal. - The EUT was tested as table top equipment. - The interference signal was applied in the following sequence: ### AC Power Ports - a. Live to Neutral: Tests were executed with +1kV and -1kV interference signal amplitudes for a 60 second period for each polarity. - b. Live and Neutral to Ground Reference: Tests were executed with +1kV and -1kV interference signal amplitudes for a 60 second period for each polarity. - c. Live to Earth: Tests were executed with +1kV and -1kV interference signal amplitudes for a 60 second period for each polarity. - d. Neutral to Earth: Tests were executed with +1kV and -1kV interference signal amplitudes for a 60 second period for each polarity. # I/O Ports - a) Capacitive coupled + 0.5 kV and 0.5 kV interference signal applied to the Interconnecting (power and communications) loom. - b) Capacitive coupled + 0.5 kV and 0.5 kV interference signal applied to the DC out loom. Table 9.1-1 Test equipment used for Electrical Fast Transients | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | | |----------------|-----------------------------|--| | TESEQ NSG 3040 | Ser No: 1856 | | #### 9.1.1 Results AC power port: - The EUT was susceptible to the fast transient bursts applied to the input AC port. - The device had a false detection but functioned normally after application of the test. ### I/O ports: The interconnecting lines were susceptible to the fast transient bursts, but functioned normally after application of the test. #### 9.1.2 Conclusion The EUT complies with criterion B of SANS / IEC 61000-4-4. **(Criterion B:** temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention) #### 9.2 ELECTROSTATIC DISCHARGE #### 9.2.1 Set-up - The EUT was switched on and operated in accordance with the manufacturer instructions. - The EUT was tested as tabletop equipment. - 10 positive and 10 negative contact discharges were applied to the VCP and HCP respectively. - 10 positive and 10 negative contact discharges were made to the parking system sensors while being un-powered. Table 9.2-1 Test equipment used for ESD | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | |-------------------------|-----------------------------| | TESEQ NSG 3040 | Ser No: 1856 | | TESEQ NSG 435 ESD gun | Ser No: 6555 | | Air discharge tip | None | | Contact discharge tip | None | | Vertical Coupling Plane | None | Table 9.2-2 Results of ESD (Contact discharge) | POSITION ON EUT | VOLTAGE | NUMBER OF DISCHARGES | RESULT | VERDICT | |------------------|---------|----------------------|-----------------|---------------| | VCP (Vertical) | ± 4kV | 10 | Not susceptible | Comply
(A) | | HCP (Horizontal) | ± 4kV | 10 | Not susceptible | Comply
(A) | • The EUT was susceptible to the \pm 4kV contact ESD pulses applied to the HCP and VCP. The Parking sensors experienced false detection but resumed normal operation after application of the Electro Static pulses. Table 9.2-3 Results of ESD (Air discharge) | POSITION ON EUT | VOLTAGE | NUMBER OF DISCHARGES | RESULT | VERDICT | |-----------------|---------|----------------------|-------------------------|---------| | EUT front panel | ± 8kV | 10 | No
discharge
path | Comply | | Enclosure | ± 8kV | 10 | No
discharge
path | Comply | The EUT was resilient to the ± 8kV air discharges applied to the sensors while being unpowered. The EUT functioned normally after they were re-powered. #### 9.2.2 Conclusion The EUT complies with criterion B of SANS / IEC 61000-4-2. (Criterion B: temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention) ### 9.3 SURGES #### 9.3.1 Set-up - The EUT was supplied with the required voltage. - Five positive and five negative 1.2/50µs pulses were directly injected into the supply at 60 second intervals between surges. The pulses were applied in the following sequence: # AC Power Port - a. Live to Neutral (and $\pm 1kV$) - b. Live to Safety earth (and $\pm 2kV$) - c. Neutral to Safety earth (and ±2kV) # Table 9.3-1 Test equipment used for Surges | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | | |----------------|-----------------------------|--| | TESEQ NSG 3040 | Ser No: 1856 | | ### 9.3.2 Results The EUT was resilient to the surges applied # 9.3.3 Conclusion The EUT complies with criterion A of the relevant section of SANS / IEC 61000-4-5. (Criterion A: normal performance within limits specified by the manufacturer, requestor or purchaser) #### 9.4 RADIATED IMMUNITY #### 9.4.1 Set-up - The EUT was switched on and operated in accordance with the manufacturer instructions. - The test was performed in a shielded enclosure in the frequency band 80 MHz to 1000 MHz with 80 % AM 1kHz, at a level of 10 V/m according to SANS / IEC 61000-4-3 Clause 8 (Frequency step and dwell method) with the following deviations: Table 9.4-1 Test equipment used for Radiated Immunity. | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | |--|-----------------------------| | Olivetti Personal Computer Model PCS 286 | Ser No : 00074333 | | RF Signal Generator HP Model 8657A | Ser No: 2819UO4767 | | Log Periodic Antenna Model EM6950 | Ser No : 1001 | | RF Amplifier EM Model 4248-1 | Ser No : None | | Field Strength Meter AR Model FM2000 | Ser No: 14021 | #### 9.4.2 Results The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 10 V/m. #### 9.4.3 Conclusion The EUT complies with criterion A of SANS / IEC 61000-4-3. (Criterion A: normal performance within limits specified by the manufacturer, requestor or purchaser) #### 9.5 CONDUCTED IMMUNITY #### 9.5.1 Set-up - The EUT was switched on and operated in accordance with the manufacturer instructions. - The test was performed in a shielded enclosure in the frequency band 150kHz to 80 MHz with 80 % AM 1kHz, at a level of 10 V (unmodulated) on the Power leads, Interconnecting and DC output looms according to SANS / IEC 61000-4-6. Table 9.5-1 Test equipment used for Conducted Immunity. | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | |------------------------------------|-----------------------------| | RF Signal Generator HP Model 8657A | Ser No: 2819UO4767 | | BCI Probe FCC Model F-120-3 | Ser No : 52 | | RF Amplifier EM Model 4248-1 | Ser No : None | | Lüthi Coupling decoupling network | Ser No : 2555 | #### 9.5.2 Results - The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 10V on the input Power leads. - The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 10V on the interconnecting (power and communications) loom. - The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 10V on the DC output loom. #### 9.5.3 Conclusion The EUT complies with criterion A of the relevant section of SANS / IEC 61000-4-6. (Criterion A: normal performance within limits specified by the manufacturer, requestor or purchaser) #### 9.6 VOLTAGE DIPS AND INTERRUPTIONS #### 9.6.1 Set-up - The EUT was switched on and operated in accordance with the manufacturer instructions. - The EUT was subjected to the following voltage dips and interruptions applied to the AC power port of the EUT: a) 100 % reduction in supply voltage for 0.5 cycle b) 70 % reduction in supply voltage for 25 cycles c) 100 % reduction in supply voltage for 250 cycles Comply criterion B Comply criterion B Table 9.6-1 Test equipment used for Voltage Dips and Interruptions | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | | |---------------------------------------|-----------------------------|--| | Pacific AC Power source Model 140-AMX | 0362 | | | TESEQ NSG 3040 | Ser No: 1856 | | # 9.6.2 Results - The PL globes of the EUT dipped momentarily during application of the 100% reduction in supply for 0.5 cycles and during application of the 70% reduction for 25 cycles, but resumed normal operation after application of the reduction in supply. - The EUT switched off during application of the 100% reduction in supply for 250 cycles but resumed normal operation after application of the voltage interruption. #### 9.6.3 Conclusion The EUT complies with criterion B of the relevant sections of SANS / IEC 61000-4-11 (Criterion B: temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention) #### 9.7 HARMONICS #### 9.7.1 Set-up - The EUT was switched on and operated in accordance with the manufacturer instructions. - The EUT was tested as Class B equipment. Table 9.7-1 Test equipment used for Harmonic Current Emissions | EQUIPMENT | SERIAL NO/ REFERENCE NUMBER | | |---------------------------------------|-----------------------------|--| | Pacific AC Power Source Model 140-AMX | 0362 | | | Thurlby Thandar Instruments HA1600 | 227306 | | # 9.7.2 Results No limits apply below 75 Watt #### 9.7.3 Conclusion The EUT complies with the Harmonic Current emission requirements of SANS / IEC 61000-3-2. #### 9.8 VOLTAGE FLUCTUATIONS & FLICKERS # 9.8.1 Setup The EUT was switched on and operated in accordance with the manufacturer instructions. The d_{max} value recorded was 2.31% #### 9.8.2 Conclusion The EUT complies with the voltage fluctuations and flicker requirements of SANS / IEC 61000-3-3. # 10. COMPLIANCE STATEMENT The EUT complies with the requirements of the specifications listed in 11 below. # 11. CONCLUSION The Joint Ventures Electronic Services Diamond Parking Guidance System (In the configuration tested) meets the requirements of the following specifications called for in BS EN 50293. - BS EN 50293 (2001): 'Electromagnetic compatibility Road traffic signal systems Product standard' - SANS 222 (2009) / CISPR22 (2008): 'Information technology equipment Radio disturbance characteristics - Limits and methods of measurement' - SANS 61000-3-2 (2009) / IEC 61000-3-2 (2009): Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A per phase) - SANS 61000-3-3 (2009) / IEC 61000-3-3 (2008) : Limits Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems – Equipment with rated current ≤16 A per phase - SANS 61000-4-2 (2009) / IEC 61000-4-2 (2008): Testing and measurement techniques Electrostatic discharge immunity test - SANS 61000-4-3 (2008) / IEC 61000-4-3 (2010): Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test - SANS 61000-4-4 (2011) / IEC 61000-4-4 (2011): Testing and measurement techniques Electrical Fast Transient / Burst - SANS 61000-4-5 (2006) / IEC 61000-4-5 (2005): Testing and measurement techniques Surge immunity test - SANS 61000-4-6 (2009) / IEC 61000-4-6 (2008): Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields - SANS 61000-4-11 (2005) / IEC 61000-4-11(2004): Testing and measurement techniques Voltage Dips, Short Interruptions and voltage variations immunity test.